51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051 | class ConnectomeDataset:
"""Holds information on a single dataset - a list of `nodes` and a dict of `connections` which has synaptic classes as keys (e.g. Generic_CS/Generic_GJ for chemical synapses/gap junctions) and connectivity arrays as values"""
DEFAULT_DTYPE = np.float64
verbose = False
def __init__(self):
self.nodes = []
self.connections = {}
self.connection_infos = []
self.view = None
def _expand_conn_arrays(self):
for c in self.connections:
conn_array = self.connections[c]
dim = conn_array.shape[0]
new_conn_array = np.zeros([dim + 1, dim + 1], dtype=self.DEFAULT_DTYPE)
new_conn_array[: conn_array.shape[0], : conn_array.shape[1]] = conn_array
self.connections[c] = new_conn_array
def to_networkx_graph(self, synclass, view=None):
import networkx as nx
conn_array = self.connections[synclass]
G = nx.DiGraph(conn_array)
mapping = {}
for n_id in range(len(self.nodes)):
mapping[n_id] = self.nodes[n_id]
Gn = nx.relabel_nodes(G, mapping)
for nn_id in Gn.nodes:
nn = Gn.nodes[nn_id]
nn["SIM_class"] = get_SIM_class(nn_id)
# print_("Determined the SIM class of %s: %s" % (nn_id, nn["SIM_class"]))
if nn["SIM_class"] == "Other" and view is not None:
ns = view.get_node_set(nn_id)
classes = [get_SIM_class(c) for c in ns.cells]
all_same = all(a == classes[0] for a in classes)
if all_same:
nn["SIM_class"] = classes[0]
# print_(" RE Determined SIM class of %s: %s" % (nn_id, nn["SIM_class"]) )
return Gn
def add_connection_info(
self, conn: ConnectionInfo, check_overwritten_connections: bool = False
):
if self.verbose:
print_("---- Adding: %s" % conn)
self.connection_infos.append(conn)
if conn.synclass not in self.connections:
if len(self.connections) == 0:
self.connections[conn.synclass] = np.zeros(
[0, 0], dtype=self.DEFAULT_DTYPE
)
else:
existing = list(self.connections.values())[0]
self.connections[conn.synclass] = np.zeros(
existing.shape, dtype=self.DEFAULT_DTYPE
)
if conn.pre_cell not in self.nodes:
self.nodes.append(conn.pre_cell)
self._expand_conn_arrays()
if conn.post_cell not in self.nodes:
self.nodes.append(conn.post_cell)
self._expand_conn_arrays()
conn_array = self.connections[conn.synclass]
pre_index = self.nodes.index(conn.pre_cell)
post_index = self.nodes.index(conn.post_cell)
if conn_array[pre_index, post_index] != 0:
print_(
"Preexisting connection (%i conns already) at (%i,%i) - %s..."
% (len(self.connection_infos), pre_index, post_index, conn)
)
if conn_array[pre_index, post_index] != conn.number:
info = (
" *** Existing connection at (%i,%i), was: %s, setting to: %s"
% (
pre_index,
post_index,
conn_array[pre_index, post_index],
conn.number,
)
)
if check_overwritten_connections:
raise Exception(info)
else:
print_(info)
conn_array[pre_index, post_index] = conn.number
if self.verbose:
print_(
"Updated (%i,%i), nodes %s: \n%s"
% (pre_index, post_index, self.nodes, conn_array)
)
def read_data(self):
return self.get_neuron_to_neuron_conns()
def get_neuron_to_neuron_conns(self):
neurons = set([])
neuron_conns = []
for conn_info in self.connection_infos:
if is_any_neuron(conn_info.pre_cell) and is_any_neuron(conn_info.post_cell):
neurons.add(conn_info.pre_cell)
neurons.add(conn_info.post_cell)
neuron_conns.append(conn_info)
return list(neurons), neuron_conns
def read_muscle_data(self):
return self.get_neuron_to_muscle_conns()
def get_neuron_to_muscle_conns(self):
neurons = set([])
muscles = set([])
conns = []
for conn_info in self.connection_infos:
if is_any_neuron(conn_info.pre_cell) and is_known_muscle(
conn_info.post_cell
):
neurons.add(conn_info.pre_cell)
muscles.add(conn_info.post_cell)
conns.append(conn_info)
return list(neurons), list(muscles), conns
def get_connections_from(self, node, synclass, ordered_by_weight=False):
if synclass not in self.connections:
return {}
conn_array = self.connections[synclass]
if node not in self.nodes:
return {}
index = self.nodes.index(node)
slice = conn_array[index]
conns = {}
for idn, n in enumerate(self.nodes):
weight = slice[idn]
if weight != 0:
conns[n] = weight
if ordered_by_weight:
conns = dict(sorted(conns.items(), key=lambda item: item[1], reverse=True))
return conns
def get_connections_summary(self, node, synclass, direction, bold_cells=False):
if direction == "from":
conns = self.get_connections_from(node, synclass)
elif direction == "to":
conns = self.get_connections_to(node, synclass)
ordered = dict(
sorted(conns.items(), key=lambda key_val: key_val[1], reverse=True)
)
vals = [
"%s: %s"
% (
k if not bold_cells else "<b>%s</b>" % k,
int(v) if v == int(v) else v,
)
for k, v in ordered.items()
]
info = ""
for v in vals:
if len(info.split("<br>")[-1]) > 80:
info += "<br>"
info += v + ", "
return info[:-2]
def get_connections_to(self, node, synclass, ordered_by_weight=False):
if synclass not in self.connections:
return {}
conn_array = self.connections[synclass]
if node not in self.nodes:
return {}
index = self.nodes.index(node)
slice = conn_array.T[index]
conns = {}
for idn, n in enumerate(self.nodes):
weight = slice[idn]
if weight != 0:
conns[n] = weight
if ordered_by_weight:
conns = dict(sorted(conns.items(), key=lambda item: item[1], reverse=True))
return conns
def get_connectome_view(self, view):
self.view = view
for ns in view.node_sets:
for cell in ns.cells:
if not is_known_cell(cell):
raise Exception(f"Cell {cell} in view {view.name} is not known!")
cv = ConnectomeDataset()
for n in view.node_sets:
if view.only_show_existing_nodes:
if n.name in self.nodes:
cv.nodes.append(n.name)
else:
cv.nodes.append(n.name)
if self.verbose:
print_(
"-- Creating view (%s, only_show_existing_nodes=%s) with %i nodes: %s\n My %i nodes: %s"
% (
view.name,
view.only_show_existing_nodes,
len(cv.nodes),
sorted(cv.nodes),
len(self.nodes),
sorted(self.nodes),
)
)
for synclass_set in view.synclass_sets:
cv.connections[synclass_set] = np.zeros(
[len(cv.nodes)] * 2, dtype=self.DEFAULT_DTYPE
)
for synclass in view.synclass_sets[synclass_set]:
if synclass in self.connections:
conn_array = self.connections[synclass]
for pre in self.nodes:
pre_index = (
cv.nodes.index(pre)
if view.only_show_existing_nodes
else view.get_index_of_cell(pre)
)
for post in self.nodes:
post_index = (
cv.nodes.index(post)
if view.only_show_existing_nodes
else view.get_index_of_cell(post)
)
if self.verbose and False:
print_(
"-- Testing if %s (%i), %s (%s) in my %i node sets %s..."
% (
pre,
pre_index,
post,
post_index,
len(view.node_sets),
view.node_sets[:5],
)
)
if pre_index >= 0 and post_index >= 0:
cv.connections[synclass_set][pre_index, post_index] += (
conn_array[
self.nodes.index(pre), self.nodes.index(post)
]
)
return cv
def summary(self):
info = "Nodes present (%i): %s\n" % (len(self.nodes), self.nodes)
for c in self.connections:
conn_array = self.connections[c]
nonzero = np.count_nonzero(conn_array)
if nonzero > 0:
info += (
"- Connection type - %s: %s, %i non-zero entries, %i total\n%s\n"
% (
c,
conn_array.shape,
nonzero,
np.sum(conn_array),
conn_array,
)
)
return info
def to_plotly_matrix_fig(
self,
synclass: str,
view: str,
color_continuous_scale: bool = None,
bold_bilaterals: bool = False,
):
conn_array = self.connections[synclass]
zmin = np.min(conn_array)
zmax = np.max(conn_array)
if synclass == "Functional":
color_continuous_scale = (
POS_NEG_COLORMAP
if color_continuous_scale is None
else color_continuous_scale
)
largest = max(abs(zmin), abs(zmax))
zmin = -1 * largest
zmax = largest
color_continuous_scale = (
DEFAULT_COLORMAP
if color_continuous_scale is None
else color_continuous_scale
)
def get_color_html(color, node):
font_weight = ""
if bold_bilaterals and is_one_of_bilateral_pair(node):
font_weight = "font-weight:bold;"
return f'<span style="color:{color};{font_weight}">{node}</span>'
node_colors = [
(
view.get_node_set(node).color
if view is not None and view.has_color()
else get_standard_color(node)
)
for node in self.nodes
]
x_ticktext = [
get_color_html(color, node) for node, color in zip(self.nodes, node_colors)
]
y_ticktext = [
get_color_html(color, node) for node, color in zip(self.nodes, node_colors)
]
import plotly.express as px
fig = px.imshow(
conn_array,
labels=dict(x="Postsynaptic", y="Presynaptic", color="Weight"),
x=x_ticktext,
y=y_ticktext,
color_continuous_scale=color_continuous_scale,
zmin=zmin,
zmax=zmax,
height=600,
)
fig.update(
data=[
{
"hovertemplate": "<b>%{y}</b> -> <b>%{x}</b>: <b>%{z}</b><extra></extra> "
}
]
)
fig.update_layout(
margin=dict(l=2, r=2, t=2, b=2),
)
sens_line = False
inter_line = False
motor_line = False
muscle_line = False
other_line = False
for i, node_value in enumerate(self.nodes):
if view is not None and not view.get_node_set(node_value).is_one_cell():
break
if not sens_line and node_value in SENSORY_NEURONS_NONPHARYNGEAL_COOK:
sens_line = True
fig.add_hline(y=i - 0.5, line_width=0.5)
fig.add_vline(x=i - 0.5, line_width=0.5)
if not inter_line and node_value in INTERNEURONS_NONPHARYNGEAL_COOK:
inter_line = True
fig.add_hline(y=i - 0.5, line_width=0.5)
fig.add_vline(x=i - 0.5, line_width=0.5)
if not motor_line and node_value in MOTORNEURONS_NONPHARYNGEAL_COOK:
motor_line = True
fig.add_hline(y=i - 0.5, line_width=0.5)
fig.add_vline(x=i - 0.5, line_width=0.5)
if not muscle_line and is_known_muscle(node_value):
muscle_line = True
fig.add_hline(y=i - 0.5, line_width=0.5)
fig.add_vline(x=i - 0.5, line_width=0.5)
if not other_line and (
not is_known_muscle(node_value) and not is_any_neuron(node_value)
):
other_line = True
fig.add_hline(y=i - 0.5, line_width=0.5)
fig.add_vline(x=i - 0.5, line_width=0.5)
return fig
def _get_line_weight(self, weight, min_nonzero_weight, max_weight):
if weight == 0:
return 0
if min_nonzero_weight == max_weight:
return 1
return 1 + (9 * weight / max_weight)
def to_plotly_graph_fig(self, synclass, view):
conn_array = self.connections[synclass]
verbose = False
print_("==============")
print_(
f"Generating: {synclass} for {view.name}, {view.synclass_sets[synclass]}"
)
min_nonzero_weight = np.min(conn_array[np.nonzero(conn_array)])
max_weight = conn_array.max()
if verbose:
print_(
f"Array \n{str(conn_array)} (weights 0 or {min_nonzero_weight}->{max_weight})"
)
DEFAULT_NODE_SIZE = 15
def get_node_size(node_set):
if node_set.size is not None:
return node_set.size
return DEFAULT_NODE_SIZE * math.sqrt(len(node_set.cells))
import plotly.graph_objects as go
import networkx as nx
gap_junction = synclass == "Electrical" or "All" in synclass
G = nx.Graph(conn_array)
init_pos = {}
for i, node_value in enumerate(self.nodes):
scale = 20
if is_pharyngeal_cell(node_value):
init_pos[i] = [
-2 * scale + _get_epsilon(scale),
0 * scale + _get_epsilon(scale),
]
elif node_value in SENSORY_NEURONS_NONPHARYNGEAL_COOK:
init_pos[i] = [
-1 * scale + _get_epsilon(scale),
0 + _get_epsilon(scale),
]
elif node_value in INTERNEURONS_NONPHARYNGEAL_COOK:
init_pos[i] = [
0 + _get_epsilon(scale),
0.1 * scale + _get_epsilon(scale),
]
elif node_value in MOTORNEURONS_NONPHARYNGEAL_COOK:
init_pos[i] = [1 * scale + _get_epsilon(scale), 0 + _get_epsilon(scale)]
elif is_known_muscle(node_value):
if is_known_body_wall_muscle(node_value):
init_pos[i] = [
1 * scale + _get_epsilon(scale),
(-1 * scale if node_value.startswith("MD") else 1 * scale)
+ _get_epsilon(scale),
]
else:
init_pos[i] = [
2 * scale + _get_epsilon(scale),
0 * scale + _get_epsilon(scale),
]
else:
init_pos[i] = [
0 * scale + _get_epsilon(scale),
-0.1 * scale + _get_epsilon(scale),
]
pos = nx.spring_layout(G, seed=1, iterations=20, k=8, pos=init_pos)
"""
print("..................")
print(G.nodes)
print(init_pos)
print(pos)
print("..................")"""
for i, node_value in enumerate(self.nodes):
node_set = view.get_node_set(node_value)
if node_set.position is not None:
pos[i] = node_set.position
node_x = [float("{:.6f}".format(pos[i][0])) for i in G.nodes()]
node_y = [float("{:.6f}".format(pos[i][1])) for i in G.nodes()]
max_dim = max(abs(max(node_x) - min(node_x)), abs(max(node_y) - min(node_y)))
edge_traces = []
for edge in G.edges():
dirs = [[edge[0], edge[1]], [edge[1], edge[0]]]
for dir_ in dirs:
edge_x = []
edge_y = []
from_node_set = view.get_node_set(self.nodes[dir_[0]])
conn_weight = conn_array[dir_[0], dir_[1]]
weight = self._get_line_weight(
abs(conn_weight), min_nonzero_weight, max_weight
) # min(10, math.sqrt(abs(conn_weight)))
opposite_dir_weight = self._get_line_weight(
abs(conn_array[dir_[1], dir_[0]]), min_nonzero_weight, max_weight
)
straight = edge[0] != edge[1] and (
gap_junction or opposite_dir_weight == 0
) # i.e. connections in both dirs, so add a curve...
if weight > 0:
x0, y0 = (float("{:.6f}".format(a)) for a in pos[dir_[0]])
x1, y1 = (float("{:.6f}".format(a)) for a in pos[dir_[1]])
edge_x.append(x0)
edge_y.append(y0)
if x0 != x1 or y0 != y1:
if verbose:
print_(f"\n - Different points ({x0},{y0}) -> ({x1},{y1})")
if not straight:
if verbose:
print_("\n - 2 way connections")
# L = math.sqrt((x1 - x0) ** 2 + (y1 - y0) ** 2) # length
offset = max_dim / 15
edge_x.append(((x0 + x1) / 2) + offset * (y0 - y1))
edge_y.append(((y0 + y1) / 2) + offset * (x1 - x0))
else:
if verbose:
print_(
f"\n - Same point ({x0},{y0}) -> ({x1},{y1}) {x0 != x1} and {y0 != y1}"
)
circle_offset_a = (
max_dim / 20 if from_node_set.is_one_cell() else max_dim / 6
)
edge_x.append(x0 - circle_offset_a)
edge_y.append(y0 + circle_offset_a / 3)
edge_x.append(x0 - circle_offset_a / 3)
edge_y.append(y0 + circle_offset_a)
edge_x.append(x1)
edge_y.append(y1)
# edge_x.append(None)
# edge_y.append(None)
if verbose:
print_(
f"{self.nodes[dir_[0]]}->{self.nodes[dir_[1]]}:{conn_weight} - Node {dir_[0]} ({x0},{y0}) -> node {dir_[1]} ({x1},{y1}), weight: {weight} (from {conn_weight}), opp weight: {opposite_dir_weight}, gj: {gap_junction}, xs: {edge_x}, ys: {edge_y}, max_dim: {max_dim}"
)
line_color = "grey"
if gap_junction:
line_color = "#ff6f6f "
elif from_node_set.color is not None:
line_color = from_node_set.color
# Add edges to the figure
edge_trace = go.Scatter(
x=edge_x,
y=edge_y,
mode="lines",
# marker=dict(symbol="arrow",size=weight * 3,angleref="previous", ),
line=dict(
color=line_color,
width=weight,
),
hoverinfo="none",
line_shape="spline" if not straight else "linear",
)
edge_traces.append(edge_trace)
node_adjacencies = []
node_colours = []
node_font_colors = {}
node_text = []
node_sizes = []
node_shapes = []
for node, adjacencies in enumerate(G.adjacency()):
node_adjacencies.append(len(adjacencies[1]))
if not view.has_color():
node_colours.append(len(adjacencies[1]))
add_text = False
for node_i, node_value in enumerate(self.nodes):
# num_connections = node_adjacencies[i]
node_set = view.get_node_set(node_value)
if view.has_color():
node_colours.append(node_set.color)
if "#" in node_set.color:
h = node_set.color[1:]
rgb = tuple((int(h[c : c + 2], 16) / 256) for c in (0, 2, 4))
else:
import webcolors
rgb = tuple(c / 256 for c in webcolors.name_to_rgb(node_set.color))
# https://stackoverflow.com/questions/3942878
if (
float(rgb[0]) * 0.299 + float(rgb[1]) * 0.587 + float(rgb[2]) * 0.2
) > 0.35:
fcolor = "#000000"
else:
fcolor = "#ffffff"
node_font_colors[node_value] = fcolor
if verbose:
print_(
f"For node {node_value} ({node_x[node_i]},{node_y[node_i]}), with color {node_set.color} ({rgb}), using color {fcolor} for optional text"
)
node_sizes.append(get_node_size(node_set))
if node_set.shape is not None:
node_shapes.append(node_set.shape)
add_text = True
else:
node_shapes.append("circle")
if node_set.is_one_cell():
desc = get_short_description(node_set.name)
else:
desc = "Cells: "
cc = 0
for c in node_set.cells:
if cc % 10 == 9:
desc += c + "<br>"
desc += c + ", "
cc += 1
desc = desc[:-2]
text = f"<b>{node_value}</b>"
text += "<br>%s" % desc
into = self.get_connections_summary(
node_value, synclass, "to", bold_cells=True
)
if len(into) > 0:
text += f"<br>Conns in: {into}"
out_of = self.get_connections_summary(
node_value, synclass, "from", bold_cells=True
)
if len(out_of) > 0:
text += f"<br>Conns out: {out_of}"
node_text.append(text)
node_trace = go.Scatter(
x=node_x,
y=node_y,
mode="markers+text" if add_text else "markers",
text=[
'<span style="color:%s;font-size:1.0em"><b>%s</b></span>'
% (node_font_colors[n] if n in node_font_colors else "black", n)
for n in self.nodes
],
marker=dict(
showscale=not view.has_color(),
colorscale="YlGnBu",
reversescale=True,
color=[],
size=DEFAULT_NODE_SIZE,
colorbar=dict(
thickness=15,
title="Node Connections",
xanchor="left",
titleside="right",
),
line_width=1,
),
opacity=1,
hoverinfo="text",
)
node_trace.marker.size = node_sizes
node_trace.marker.symbol = node_shapes
node_trace.marker.color = node_colours
node_trace.hovertext = node_text
fig = go.Figure(
data=edge_traces + [node_trace],
layout=go.Layout(
showlegend=False,
hovermode="closest",
margin=dict(b=20, l=5, r=5, t=40),
xaxis=dict(showgrid=False, zeroline=False),
yaxis=dict(showgrid=False, zeroline=False),
width=800,
height=800,
),
)
fig.update_yaxes(
scaleanchor="x",
scaleratio=1,
)
fig.update_traces(textposition="middle center")
fig.update_layout(
template="plotly_white",
)
fig.update_xaxes(visible=False)
fig.update_yaxes(visible=False)
return fig
def to_plotly_hive_plot_fig(self, synclass, view):
from hiveplotlib import hive_plot_n_axes
from hiveplotlib.converters import networkx_to_nodes_edges
from hiveplotlib.node import split_nodes_on_variable
from hiveplotlib.viz.plotly import hive_plot_viz as plotly_hive_plot_viz
print_("==============")
print_(f"Generating: {synclass} for {view}")
verbose = False
# print(self.summary())
cv = self
G = cv.to_networkx_graph(synclass, view)
nids = [n for n in G.nodes]
for n_id in nids:
node = G.nodes[n_id]
if node["SIM_class"] == "Other":
G.remove_node(n_id)
if len(G.nodes) == 0:
return None
nodes, edges = networkx_to_nodes_edges(G)
if verbose:
print_("%s" % nodes)
blocks_dict_unordered = split_nodes_on_variable(
nodes, variable_name="SIM_class"
)
if verbose:
print_("--------------\nNodes: %s" % nodes)
print_("Edges: %s" % edges)
print_(pprint.pprint(nx.node_link_data(G)))
print_(
"Unordered: %s (%s)"
% (blocks_dict_unordered, type(blocks_dict_unordered))
)
INTERNEURON = "Interneuron"
MOTORNEURON = "Motorneuron"
SENSORY = "Sensory"
blocks_dict = {}
for k in [INTERNEURON, MOTORNEURON, SENSORY]:
if k not in blocks_dict_unordered:
blocks_dict[k] = []
else:
blocks_dict[k] = blocks_dict_unordered[k]
splits = list(blocks_dict.values())
# pull out degree information from nodes
degrees = dict(G.degree)
in_degrees = dict(G.in_degree)
out_degrees = dict(G.out_degree)
# add degree information to Node instances
for node in nodes:
deg = degrees[node.unique_id]
block = node.data["SIM_class"]
node.add_data(data={"degree": deg})
if verbose:
print_(
f" - Node {node.unique_id}, block {block} has degree {deg}; {node.data}"
)
num_steps_for_edge_curves = 25
hp = hive_plot_n_axes(
node_list=nodes,
edges=edges,
axes_assignments=splits,
sorting_variables=["degree"] * 3,
repeat_axes=[True, True, True],
repeat_edge_kwargs={
"color": "grey",
"num_steps": num_steps_for_edge_curves,
},
cw_edge_kwargs={"num_steps": num_steps_for_edge_curves},
ccw_edge_kwargs={"num_steps": num_steps_for_edge_curves},
vmins=[0] * 3,
vmaxes=[max(degrees.values())] * 3,
)
for ax in hp.axes:
if "1" in ax:
hp.axes[ax].long_name = INTERNEURON
if "2" in ax:
hp.axes[ax].long_name = MOTORNEURON
if "3" in ax:
hp.axes[ax].long_name = SENSORY
for ax_name in hp.axes:
ax = hp.axes[ax_name]
if verbose:
print_(f" - Axis {ax.long_name}, {ax.start}->{ax.end}...")
from cect.WormAtlasInfo import WA_COLORS
INTERNEURON_COLOR = WA_COLORS["Hermaphrodite"]["Nervous Tissue"]["interneuron"]
SENSORY_COLOR = WA_COLORS["Hermaphrodite"]["Nervous Tissue"]["sensory neuron"]
MOTORNEURON_COLOR = WA_COLORS["Hermaphrodite"]["Nervous Tissue"]["motor neuron"]
hp.add_edge_kwargs(
axis_id_1="Group 1_repeat",
axis_id_2="Group 2",
a2_to_a1=False,
color=INTERNEURON_COLOR,
)
hp.add_edge_kwargs(
axis_id_1="Group 2",
axis_id_2="Group 1_repeat",
a2_to_a1=False,
color=MOTORNEURON_COLOR,
)
hp.add_edge_kwargs(
axis_id_1="Group 1",
axis_id_2="Group 3_repeat",
a2_to_a1=False,
color=INTERNEURON_COLOR,
)
hp.add_edge_kwargs(
axis_id_1="Group 3_repeat",
axis_id_2="Group 1",
a2_to_a1=False,
color=SENSORY_COLOR,
)
hp.add_edge_kwargs(
axis_id_1="Group 3",
axis_id_2="Group 2_repeat",
a2_to_a1=False,
color=SENSORY_COLOR,
)
hp.add_edge_kwargs(
axis_id_1="Group 2_repeat",
axis_id_2="Group 3",
a2_to_a1=False,
color=MOTORNEURON_COLOR,
)
fig = plotly_hive_plot_viz(
hp,
width=800,
height=800,
)
# ax.set_title("Stochastic Block Model, Base Hive Plot Visualization", y=1.05, size=20)
# fig.update_traces(mode="markers+lines", hovertemplate=None)
fig.update_layout(hovermode="closest")
fig.update_layout(
template="plotly_white",
plot_bgcolor="rgba(0, 0, 0, 0)",
paper_bgcolor="rgba(0, 0, 0, 0)",
)
fig.update_layout(
margin=dict(l=2, r=2, t=2, b=2),
)
fig.update(data=[{"hoverinfo": "skip"}])
# print(dir(fig))
count = 0
for d in fig.data:
if d["mode"] == "text":
if d["text"] == "Sensory" and d["textposition"] == "top center":
d["y"] = [-5.4]
if d["text"] == "Motorneuron" and d["textposition"] == "bottom center":
d["y"] = [5.4]
if d["text"] == "Interneuron":
if d["y"][0] > 0:
d["y"] = [2.6]
if d["y"][0] < 0:
d["y"] = [-2.6]
# print("Moving text %s" % d)
if d["mode"] == "markers":
nrn_num = len(d["x"])
d["hovertemplate"] = "%{text}<extra></extra>"
d.pop("hoverinfo", None)
if count == 0 or count == 1:
d["marker"]["color"] = [INTERNEURON_COLOR] * nrn_num
type_ = "Interneuron"
if count == 2 or count == 3:
d["marker"]["color"] = [MOTORNEURON_COLOR] * nrn_num
type_ = "Motorneuron"
if count == 4 or count == 5:
d["marker"]["color"] = [SENSORY_COLOR] * nrn_num
type_ = "Sensory"
text_at_point = {}
for n_index in range(len(blocks_dict[type_])):
n = blocks_dict[type_][n_index]
x = d["x"][n_index]
n_text = "%s (in: %s, out: %s)" % (n, in_degrees[n], out_degrees[n])
if x in text_at_point:
text_at_point[x] += "<br>%s" % n_text
else:
text_at_point[x] = n_text
d["text"] = [text_at_point[x] for x in d["x"]]
# print(d)
count += 1
return fig
def connection_number_plot(self, synclass): # Todo: get better name
from cect.Cells import COOK_GROUPING_1
from cect.Cells import get_standard_color
from matplotlib import pyplot as plt
for group in COOK_GROUPING_1:
print_(" = Adding plot for %s" % group)
xs = []
ys = []
labels = []
colors = []
markers = []
fill_styles = []
pre_cells = sorted(COOK_GROUPING_1[group])
for pre_cell_index in range(len(pre_cells)):
pre_cell = pre_cells[pre_cell_index]
conns = self.get_connections_from(
pre_cell, synclass, ordered_by_weight=True
)
for post_cell in conns:
weight = conns[post_cell]
colors.append(get_standard_color(post_cell))
xs.append(pre_cell_index)
ys.append(weight)
labels.append(pre_cell)
if weight < 0:
fill_styles.append("none")
else:
fill_styles.append("full")
if are_bilateral_pair(pre_cell, post_cell):
markers.append("D")
elif is_bilateral_left(pre_cell):
markers.append(">")
elif is_bilateral_right(pre_cell):
markers.append("<")
else:
markers.append("o")
print_(
f" Adding {pre_cell}->{post_cell} with weight {weight} ({markers[-1]})"
)
if len(xs) > 0:
fig, ax = plt.subplots()
plt.title("Conns of type: %s from cells in: %s" % (synclass, group))
for i in zip(labels, ys, colors, markers, fill_styles):
plt.plot(
i[0], i[1], linewidth=0, color=i[2], marker=i[3], fillstyle=i[4]
)
plt.setp(
ax.get_xticklabels(),
rotation=90,
ha="center",
rotation_mode="default",
)
# ax.set_xticks(ticks=range(len(pre_cells)), labels=pre_cells)
plt.show()
|